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Submeasures

C = an algebra of subsets of X

A function φ : C → R is a submeasure if

— φ(∅) = 0,

— φ is monotone, that is, φ(A) ≤ φ(B) for all A,B ∈ C with
A ⊆ B, and

— φ is subadditive, that is, φ(A ∪ B) ≤ φ(A) + φ(B) for all
A,B ∈ C.

All submeasures φ are assumed to be diffused, that is, for
every ε > 0, there exists a finite subset B ⊆ C such that

X =
⋃
B and φ(B) ≤ ε for B ∈ B.
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Submeasures

φ a submeasure on C

φ is a measure if φ(A ∪ B) = φ(A) + φ(B) for disjoint A,B ∈ C.

φ is pathological if there does not exist a non-zero measure
µ : C → R with µ ≤ φ.

Herer–Christensen (1975), Popov (1976), Erdős–Hajnal (1967):
There exists a pathological submeasure.

Talagrand: There exists an exhaustive pathological submeasure.
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A submeasure φ on C induces a (pseudo-)metric on C

distφ(A,B) = φ(A4B), for A,B ∈ C.
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Let C1, . . . ,Cm ⊆ X . Define

t(C1, . . . ,Cm)

to be the maximum of k ∈ N such that for each x ∈ X

|{i | x ∈ Ci}| ≥ k.

t(C1,...,Cm)
m is the covering number of Kelley of the sequence

(C1, . . . ,Cm).
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φ : C → R a submeasure

For ξ > 0, let
Cφ,ξ = {A ∈ C | φ(A) ≤ ξ}.

Define hφ : R>0 → R>0 by

hφ(ξ) =
1

ξ
sup
{

t(C1,...,Cm)
m

∣∣∣m ∈ N, m > 0, C1, . . . ,Cm ∈ Cφ,ξ
}
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The asymptotic behavior of hφ at 0 is restricted.

Theorem (Sch.–S.)

The limit limξ→0 hφ(ξ) exists (possibly infinite).
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A submeasure φ is called

— elliptic if hφ(ξ) = O(ξ) as ξ → 0,

— hyperbolic if 1
hφ(ξ) = O(ξ) as ξ → 0,

— parabolic if φ is neither elliptic, nor hyperbolic.
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Proposition (Sch.–S.)

Let φ be a submeasure.

(i) The following conditions are equivalent.

— φ is hyperbolic;
— φ is pathological;
— hφ is unbounded;
— limξ→0 ξhφ(ξ) = 1.

(ii) If φ is parabolic, then limξ→0 hφ(ξ) exists and is finite.

(iii) If φ is a measure, then limξ→0 hφ(ξ) = 1
φ(X ) .
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Groups L0(φ, G)

φ a submeasure on C and G a topological group

Let
L0(φ,G )

be the collection of all f : X → G , for which there exists a finite
partition B of X into elements of C with

f is constant on B for B ∈ B.
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Groups L0(φ, G)

Equip L0(φ,G ) with the pointwise multiplication.

Equip L0(φ,G ) with a topology as follows.

δ, r > 0 determine a neighborhood of f ∈ L0(φ,G ) as the set of all
g ∈ L0(φ,G ) with

φ({x | d(f (x), g(x)) > δ}) < r .

This is the topology of convergence in φ.
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G a topological group

A G -flow is a continuous action of G on a compact space.

A topological group G is extremely amenable if each G -flow has
a G -fixed point.

G is amenable if each G -flow has a G -invariant, regular, Borel
probability measure.
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The first example of an extremely amenable group

Herer–Christensen: If φ is a pathological submeasure, then
L0(φ,R) is extremely amenable.

Used methods of functional analysis. The proof does not generalize
much beyond G = R.



Polish groups, submeasures, and concentartion

Topological dynamics and groups of the form L0(φ, G)

Topological dynamics

The first example of an extremely amenable group

Herer–Christensen: If φ is a pathological submeasure, then
L0(φ,R) is extremely amenable.

Used methods of functional analysis. The proof does not generalize
much beyond G = R.



Polish groups, submeasures, and concentartion

Topological dynamics and groups of the form L0(φ, G)

Topological dynamics

Two general methods for proving extreme amenability

(A) Ramsey theory

(B) Concentration of measure

Gromov–Milman: The unitary group of a separable, infinite
dimensional Hilbert space is extremely amenable.

Glasner, Pestov: If φ is a measure and G is an amenable locally
compact Polish group, then L0(φ,G ) is extremely amenable.
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The following theorem is our main result on dynamics of groups of
the form L0(φ,G ).

Theorem (Sch.–S.)

If φ is parabolic or hyperbolic and G is amenable, then L0(φ,G )
is extremely amenable.

The theorem above generalizes results of Herer–Christensen,
Glasner, Pestov, and, to a large degree, Farah–S. and Sabok.
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The following proposition complements, to an extent, the previous
theorem.

Proposition (Sch.–S.)

If φ is elliptic or parabolic and G is not amenable, then L0(φ,G )
is not extremely amenable.
In fact, L0(φ,G ) is not even amenable.
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X = (X , d , µ) is a metric measure space, mm-space for short, if

— X is a standard Borel space,

— d is a Borel pseudo-metric on X , and

— µ is a probability measure on X .

For a Borel set A ⊆ X and r > 0, we write

Br (A) = {x ∈ X | d(A, x) < r}.
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Let (X )i∈I be a net of mm-spaces along a directed order I .

(X )i∈I has concentration of measure if, given Borel sets Ai ⊆ Xi

and r > 0,
inf
i∈I
µi (Ai ) > 0

implies
lim
i∈I

µ(Br (Ai )) = 1.
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φ a submeasure on C

For a partition P into elements of C and a set Ω, define a
pseudo-metric δP,φ by

δP,φ(x , y) = φ
(⋃
{P ∈ P | xP 6= yP}

)
.

Given a standard Borel probability space (Ω, µ), let

X (P) =
(
ΩP , δP,φ, µ

⊗P) .
X (P) is an mm-space.
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Given two partitions P and Q into elements of C, we write

P � Q ⇐⇒ ∀Q ∈ Q∃P ∈ P Q ⊆ P.

� is a directed order. So

(X (P))P

is a net of mm-spaces.



Polish groups, submeasures, and concentartion

Nets of mm-spaces

Nets of mm-spaces associated with a submeasure

Given two partitions P and Q into elements of C, we write

P � Q ⇐⇒ ∀Q ∈ Q∃P ∈ P Q ⊆ P.

� is a directed order. So

(X (P))P

is a net of mm-spaces.



Polish groups, submeasures, and concentartion

Covering concentration of submeasures

Covering concentration of
submeasures



Polish groups, submeasures, and concentartion

Covering concentration of submeasures

We say that a submeasure φ has covering concentration if the
associated with it net (X (P))P of mm-spaces has concentration of
measure.

The connection with extreme amenability is given by the
following proposition.

Proposition (Sch.–S.)

If φ has covering concentration and G is amenable, then L0(φ,G )
is extremely amenable.
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The following theorem is our main result on covering concentration.

It implies extreme amenability of L0(φ,G ) for φ hyperbolic or
parabolic and G amenable.

Theorem (Sch.–S.)

Every hyperbolic or parabolic submeasure has covering
concentration.
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The previous theorem does not extend to elliptic submeasures.

Theorem (Sch.–S.)

There is a submeasure (necessarily elliptic) that does not have
covering concentration.
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N a finite non-empty set and m > 0

C = (Ci )1≤i≤m a cover of N, and w = (wi )1≤i≤m where wi ≥ 0

(Ωj)j∈N a family of non-empty sets

Define the pseudo-metric dC,w on
∏

j∈N Ωj by

dC,w (x , y) = inf
{∑

i∈I
wi | {j ∈ N | xj 6= yj} ⊆

⋃
i∈I

Ci

}
.
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Concentration of measure in products

The metric dC,w generalizes the Hamming metric on product
spaces in a direction that seems “orthogonal” to an important
generalization due to Talagrand.
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Theorem (Sch.–S.)

N, m, C, and w as above, but assume t(C) ≥ k

(Ωj , µj)j∈N a family of standard Borel probability spaces

f :
∏

j∈N Ωj → R a measurable function that is 1-Lipschitz with
respect to dC,w

Then, for every r > 0,(⊗
j∈N

µj
)

({x | f (x)− E(f ) ≥ r}) ≤ exp
(
− kr2

4(w2
1 +···+w2

m)

)
.
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Concentration of measure in products

The proof uses entropy (extending methods due to Ledoux and
Marton, involving “Herbst argument”) and is inspired by a
Loomis–Whitney-type theorem due to Bollobás–Thomason and
Finner.
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